EcoStruxure Control Expert Libraries - Overview

Model Predictive Control

Value

Why use Model Predictive Control

- Some process are slow to react to a change in the manipulated value.
 - The sensor could be distant from the controller
 - It may take time for a reaction to cause the response
- Model Predictive controllers contain a model of the process which allow the system to predict the impact of the output on the process.
 - The delay in reaction is modelled within the controller
 - The actual output is tracked against the predicted output to monitor the impact of the change

Available Models

Applications for model types

1st Order Models

- Thermal Applications
 - Heat Exchanges
 - Dryers
- Tank Applications
 - Level
 - Pressure
- Fluid Applications
 - Incompressible fluid in pipe

Integrative 1st Order Model

Chemical Applications

3rd Order Model

Controller Blocks

Typical Blocks

Parameters

What can be controlled

Model Parameters

KM: Gain

TM: Time Constant

DM: Pure Time Delay

3rd Order Only

TM2: Time Constant 2

TM3: Time Constant 3

Tune Parameters

TS: Sampling Time

H: Coincidence Point

TRBF: Closed Loop Response

Output Parameters

YMAX: Maximum Value

YMIN: Minimum Value

YRATE: Maximum Rate

Options

Additional Functionality

PV Zone Control

For Non-linear process

- TRBF (95% closed loop response time) can be changed dynamically
- Within zone TRBF is changed linearly

SP Ramp & Docking

- Controls the change of set point
- Supports a table of recipes for Time, Value and Docking horizon

Rate Limiter

- Limits the first derivative of a signal passing through it.
- Used to sync between master and slave controller rates

Confidential Property of Schneider Electric | Page 6

Feed Forward Compensation (Enhance Controllers Only)

Managing Process Disturbance

Applications

 Any where a known process (steam flow in a boiler) will have a measurable impact of the operation of the process.

 The Feed Forward block computes a compensation value to be applied to the controller in order to correct for the disturbance

Split Range Compensation (Enhance Controllers Only)

Managing Dual Outputs

- Applications
 - Heating / Cooling valves to a heat exchanger
 - (Another application would be good)

- Split Range Compensation
 - Balances the output from the individual controllers (Hot & Cold) to balance the output
 - Real output is returned to the controllers via the RCPY parameter

Case Study: Dryer

Food & Beverage

Case Study: Temperature Management

Repsol, Spain: Chemical

